Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.218
Filtrar
1.
PLoS Pathog ; 20(3): e1012072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452154

RESUMO

Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Camundongos , Animais , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Camundongos Transgênicos , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Nasofaringe
2.
Curr Opin Microbiol ; 77: 102420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219421

RESUMO

Group A Streptococcus (GAS) has a fantastically wide tissue tropism in humans, manifesting as different diseases depending on the strain's virulence factor repertoire and the tissue involved. Activation of immune cells and pro-inflammatory signaling has historically been considered an exclusively host-protective response that a pathogen would seek to avoid. However, recent advances in human and animal models suggest that in some tissues, GAS will activate and manipulate specific pro-inflammatory pathways to promote growth, nutrient acquisition, persistence, recurrent infection, competition with other microbial species, dissemination, and transmission. This review discusses molecular interactions between the host and pathogen to summarize how infection varies across tissue and stages of inflammation. A need for inflammation for GAS survival during common, mild infections may drive selection for mechanisms that cause pathological and excess inflammation severe diseases such as toxic shock syndrome, necrotizing fasciitis, and rheumatic heart disease.


Assuntos
Fasciite Necrosante , Infecções Estreptocócicas , Animais , Humanos , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Inflamação
3.
J Biol Chem ; 300(2): 105623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176650

RESUMO

Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Streptococcus pyogenes/metabolismo
4.
Crit Rev Microbiol ; 50(2): 241-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38140809

RESUMO

Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.


Assuntos
Infecções Estreptocócicas , Transcriptoma , Humanos , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Perfilação da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
5.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117674

RESUMO

The standalone regulator RofA is a positive regulator of the pilus locus in Streptococcus pyogenes. Found in only certain emm genotypes, RofA has been reported to regulate other virulence factors, although its role in the globally dominant emm1 S. pyogenes is unclear. Given the recent emergence of a new emm1 (M1UK) toxigenic lineage that is distinguished by three non-synonymous SNPs in rofA, we characterized the rofA regulon in six emm1 strains that are representative of the two contemporary major emm1 lineages (M1global and M1UK) using RNAseq analysis, and then determined the specific role of the M1UK-specific rofA SNPs. Deletion of rofA in three M1global strains led to altered expression of 14 genes, including six non-pilus locus genes. In M1UK strains, deletion of rofA led to altered expression of 16 genes, including nine genes that were unique to M1UK. Only the pilus locus genes were common to the RofA regulons of both lineages, while transcriptomic changes varied between strains even within the same lineage. Although introduction of the three SNPs into rofA did not impact gene expression in an M1global strain, reversal of three SNPs in an M1UK strain led to an unexpected number of transcriptomic changes that in part recapitulated transcriptomic changes seen when deleting RofA in the same strain. Computational analysis predicted that interactions with a key histidine residue in the PRD domain of RofA would differ between M1UK and M1global. RofA is a positive regulator of the pilus locus in all emm1 strains but effects on other genes are strain- and lineage-specific, with no clear, common DNA binding motif. The SNPs in rofA that characterize M1UK may impact regulation of RofA; whether they alter phosphorylation of the RofA PRD domain requires further investigation.


Assuntos
Regulon , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Regulon/genética , Proteínas de Bactérias/metabolismo , Pandemias , Reino Unido
6.
Sci Rep ; 13(1): 19052, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923786

RESUMO

The Streptococcus pyogenes cell envelope protease (SpyCEP) is vital to streptococcal pathogenesis and disease progression. Despite its strong association with invasive disease, little is known about enzymatic function beyond the ELR+ CXC chemokine substrate range. As a serine protease, SpyCEP has a catalytic triad consisting of aspartate (D151), histidine (H279), and serine (S617) residues which are all thought to be mandatory for full activity. We utilised a range of SpyCEP constructs to investigate the protein domains and catalytic residues necessary for enzyme function. We designed a high-throughput mass spectrometry assay to measure CXCL8 cleavage and applied this for the first time to study the enzyme kinetics of SpyCEP. Results revealed a remarkably low Michaelis-Menton constant (KM) of 82 nM and a turnover of 1.65 molecules per second. We found that an N-terminally-truncated SpyCEP C-terminal construct containing just the catalytic dyad of H279 and S617 was capable of cleaving CXCL8 with a similar KM of 55 nM, albeit with a reduced substrate turnover of 2.7 molecules per hour, representing a 2200-fold reduction in activity. We conclude that the SpyCEP C-terminus plays a key role in high affinity substrate recognition and binding, but that the N-terminus is required for full catalytic activity.


Assuntos
Peptídeo Hidrolases , Streptococcus pyogenes , Streptococcus pyogenes/metabolismo , Peptídeo Hidrolases/metabolismo , Domínios Proteicos
7.
Nat Struct Mol Biol ; 30(11): 1707-1718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828409

RESUMO

Using Sanger sequencing and high-throughput genome sequencing of DNA cleavage reactions, we find that the Streptococcus pyogenes SpCas9 complex responds to internal mechanical strain by robustly generating a distribution of overhanging, rather than blunt, DNA ends. Internal mechanical strain is generated by shifting (increasing or decreasing) the spacing between the RNA-DNA hybrid and the downstream canonical PAM. Up to 2-base 3' overhangs can be robustly generated via a 2-base increase in the distance between hybrid and PAM. We also use single-molecule experiments to reconstruct the full course of the CRISPR-SpCas9 reaction in real-time, structurally and kinetically monitoring and quantifying R-loop formation, the first and second DNA-incision events, and dissociation of the post-catalytic complex. Complex dissociation and release of broken DNA ends is a rate-limiting step of the reaction, and shifted SpCas9 is sufficiently destabilized so as to rapidly dissociate after formation of broken DNA ends.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/metabolismo , DNA/genética , Genoma , Streptococcus pyogenes/metabolismo , Edição de Genes
8.
Nat Commun ; 14(1): 6726, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872175

RESUMO

Immunoglobulin (Ig) A functions as monomeric IgA in the serum and Secretory (S) IgA in mucosal secretions. Host IgA Fc receptors (FcαRs), including human FcαR1/CD89, mediate IgA effector functions; however, human pathogen Streptococcus pyogenes has evolved surface-protein virulence factors, including M4, that also engage the CD89-binding site on IgA. Despite human mucosa serving as a reservoir for pathogens, SIgA interactions with CD89 and M4 remain poorly understood. Here we report cryo-EM structures of M4-SIgA and CD89-SIgA complexes, which unexpectedly reveal different SIgA-binding stoichiometry for M4 and CD89. Structural data, supporting experiments, and modeling indicate that copies of SIgA bound to S. pyogenes M4 will adopt similar orientations on the bacterium surface and leave one host FcαR binding site open. Results suggest unappreciated functional consequences associated with SIgA binding to host and bacterial FcαRs relevant to understanding host-microbe co-evolution, IgA effector functions and improving the outcomes of group A Streptococcus infection.


Assuntos
Imunoglobulina A Secretora , Streptococcus pyogenes , Humanos , Sítios de Ligação , Interações Hospedeiro-Patógeno , Imunoglobulina A , Imunoglobulina A Secretora/química , Imunoglobulina A Secretora/metabolismo , Receptores Fc/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
9.
Crit Rev Immunol ; 43(3): 1-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824373

RESUMO

Rheumatic heart disease (RHD) is a post-streptococcal sequela caused by Streptococcus pyogenes. The global burden of disease is high among people with low socio-economic status, with significant cases emerging every year despite global eradication efforts. The current treatment includes antibiotic therapies to target strep throat and rheumatic fever and valve replacement strategies as a corrective measure for chronic RHD patients. Valvular damage and valve calcification are considered to be the end-stage processes of the disease resulting from impairment of the endothelial arrangement due to immune infiltration. This immune infiltration is mediated by a cascade of events involving NLRP3 inflammasome activation. NLRP3 inflammasome is activated by wide range of stimuli including bacterial cell wall components like M proteins and leukocidal toxins like nicotinamide dehydrogenase (NADase) and streptolysin O (SLO) and these play a major role in sustaining the virulence of Streptococcus pyogenes and progression of RHD. In this review, we are discussing NLRP3 inflammasome and its plausible role in the pathogenesis of RHD by exploiting the host-pathogen interaction mainly focusing on the NLRP3 inflammasome-mediated cytokines IL-1ß and IL-18. Different therapeutic approaches involving NLRP3 inflammasome inactivation, caspase-1 inhibition, and blockade of IL-1ß and IL-18 are discussed in this review and may be promising for treating RHD patients.


Assuntos
Inflamassomos , Cardiopatia Reumática , Humanos , Inflamassomos/metabolismo , Cardiopatia Reumática/microbiologia , Cardiopatia Reumática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-18 , Citocinas , Streptococcus pyogenes/metabolismo
10.
J Biol Chem ; 299(11): 105345, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838172

RESUMO

The important bacterial pathogen Streptococcus pyogenes secretes IdeS (immunoglobulin G-degrading enzyme of S. pyogenes), a proteinase that cleaves human immunoglobulin G (IgG) antibodies in the hinge region resulting in Fc (fragment crystallizable) and F(ab')2 (fragment antigen-binding) fragments and protects the bacteria against phagocytic killing. Experiments with radiolabeled IdeS and flow cytometry demonstrated that IdeS binds to the surface of S. pyogenes, and the interaction was most prominent in conditions resembling those in the pharynx (acidic pH and low salt), the habitat for S. pyogenes. SpnA (S. pyogenes nuclease A) is a cell wall-anchored DNase. A dose-dependent interaction between purified SpnA and IdeS was demonstrated in slot binding and surface plasmon resonance spectroscopy experiments. Gel filtration showed that IdeS forms proteolytically active complexes with SpnA in solution, and super-resolution fluorescence microscopy revealed the presence of SpnA-IdeS complexes at the surface of S. pyogenes. Finally, specific IgG antibodies binding to S. pyogenes surface antigens were efficiently cleaved by surface-associated IdeS. IdeS is secreted by all S. pyogenes isolates and cleaves IgG antibodies with a unique degree of specificity and efficiency. These properties and the finding here that the proteinase is present and fully active at the bacterial surface in complex with SpnA implicate an important role for IdeS in S. pyogenes biology and pathogenesis.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G , Peptídeo Hidrolases , Streptococcus pyogenes/metabolismo
11.
J Bacteriol ; 205(10): e0027423, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37811985

RESUMO

Membranes are a universal barrier to all cells. Phospholipids, essential bacterial membrane components, are composed of a polar head and apolar fatty acid (FA) chains. Most bacterial FAs are synthesized by the Type II FA synthesis pathway (FASII). In Streptococcaceae, Enterococci, and Lactococcus lactis, a unique feedback mechanism controls the FASII gene expression. FabT, encoded in the FASII main locus, is the repressor, and it is activated by long-chain acyl-acyl carrier protein (acyl-ACP). Many Streptococci, Enterococcus faecalis, but not L. lactis, possess two ACPs. The AcpA-encoding gene is within the FASII locus and is coregulated with the FASII genes. Acyl-AcpA is the end product of FASII. The AcpB-encoding gene is in operon with plsX encoding an acyl-ACP:phosphate acyltransferase. The role of acyl-AcpB as FabT corepressor is controversial. Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possesses AcpB. In this study, by comparing the expression of FabT-controlled genes in an acpB-deleted mutant with those in a wild-type and in a fabT mutant strain, grown in the presence or absence of exogenous FAs, we show that AcpB is the S. pyogenes FabT main corepressor. Its deletion impacts membrane FA composition and bacterial adhesion to eucaryotic cells, highlighting the importance of FASII control. Importance Membrane composition is crucial for bacterial growth or interaction with the environment. Bacteria synthesize fatty acids (FAs), membrane major constituents, via the Type II FAS (FASII) pathway. Streptococci control the expression of the FASII genes via a transcriptional repressor, FabT, with acyl-acyl carrier proteins (ACPs) as corepressor. Streptococcus pyogenes that causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections possesses two ACPs. acpA, but not acpB, is a FASII gene. In this study, we show that acyl-AcpBs are FabT main corepressors. Also, AcpB deletion has consequences on the membrane FA composition and bacterial adhesion to host cells. In addition to highlighting the importance of FASII control in the presence of exogeneous FAs for the adaptation of bacteria to their environment, our data indicate that FASII gene repression is mediated by a corepressor whose gene expression is not repressed in the presence of exogenous FAs.


Assuntos
Ácidos Graxos , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas Correpressoras/genética , Ácidos Graxos/metabolismo , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Curr Microbiol ; 80(8): 268, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402084

RESUMO

The host transcriptional activator Early growth response 1 (EGR1) plays a vital role in cell cycle and differentiation, cell proliferation, and regulation of cytokines and several growth factors. It is an immediate-early gene that is expressed as an initial response to various environmental stimuli. Bacterial infection is one such factor that can trigger the expression of EGR1 in host. Therefore, it is imperative to understand expression of EGR1 during early stages of host-pathogen interaction. Streptococcus pyogenes is an opportunistic bacteria causing skin and respiratory tract infections in humans. The quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (Oxo-C12), not synthesised by S. pyogenes, can be sensed by S. pyogenes leading to molecular changes in the pathogen. In this study, we investigated the role of Oxo-C12 on EGR1 regulation in lung epithelial and murine macrophage cell line upon S. pyogenes infection. We report that Oxo-C12 sensitised S. pyogenes upregulates the transcriptional expression of EGR1 through ERK1/2 pathway. It was observed that EGR1 was not involved in the intial attachment of S. pyogenes to A549 cells. However, inhibition of EGR1 in macrophage cell line, J774A.1, through the ERK1/2 pathway resulted in decreased adhesion of S. pyogenes. The EGR1 upregulation by Oxo-C12 sensitised S. pyogenes plays a vital role in enhancing the survival of S. pyogenes in murine macrophages, leading to persistent infection. Thus, understanding the molecular modulation in the host during bacterial infection will further help develop therapeutics to target specific sites.


Assuntos
Acil-Butirolactonas , Streptococcus pyogenes , Camundongos , Humanos , Animais , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Percepção de Quorum , Homosserina/metabolismo , Homosserina/farmacologia , 4-Butirolactona/metabolismo , Pseudomonas aeruginosa/metabolismo
13.
Biochem Biophys Res Commun ; 676: 141-148, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516031

RESUMO

Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters with broad specificities that contribute to intracellular metal homeostasis and toxicity in bacterial pathogens. Streptococcus pyogenes (Group A Streptococcus [GAS]) expresses two homologous CDF efflux transporters, MntE and CzcD, which selectively transport Mn and Zn, respectively. We discovered that the MntE- and CzcD-deficient strains exhibited a marked decrease in the viability of macrophage-differentiated THP-1 cells and neutrophils. In addition, the viability of mice infected with both deficient strains markedly increased. Consistent with a previous study, our results suggest that MntE regulates the PerR-dependent oxidative stress response by maintaining intracellular Mn levels and contributing to the growth of GAS. The maturation and proteolytic activity of streptococcal cysteine protease (SpeB), an important virulence factor in GAS, has been reported to be abrogated by zinc and copper. Zn inhibited the maturation and proteolytic activity of SpeB in the culture supernatant of the CzcD-deficient strain. Furthermore, Mn inhibited SpeB maturation and proteolytic activity in a MntE-deficient strain. Since the host pathogenicity of the SpeB-deficient strain was significantly reduced, maintenance of intracellular manganese and zinc levels in the GAS via MntE and CzcD may not only confer metal resistance to the bacterium, but may also play an essential role in its virulence. These findings provide new insights into the molecular mechanisms of pathogenicity, which allow pathogens to survive under stressful conditions associated with elevated metal ion concentrations during host infection.


Assuntos
Evasão da Resposta Imune , Streptococcus pyogenes , Animais , Camundongos , Streptococcus pyogenes/metabolismo , Metais/metabolismo , Zinco/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cátions Bivalentes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
14.
Mol Pharm ; 20(8): 4041-4049, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406301

RESUMO

Posttranslational modifications of proteins can impact their therapeutic efficacy, stability, and potential for pharmaceutical development. The Group AStreptococcus pyogenesC5a peptidase (ScpA) is a multi-domain protein composed of an N-terminal signal peptide, a catalytic domain (including propeptide), three fibronectin domains, and cell membrane-associated domains. It is one of several proteins produced by Group AS. pyogenesknown to cleave components of the human complement system. After signal peptide removal, ScpA undergoes autoproteolysis and cleaves its propeptide for full maturation. The exact location and mechanism of the propeptide cleavage, and the impact of this cleavage on stability and activity, are not clearly understood, and the exact primary sequence of the final enzyme is not known. A form of ScpA with no autoproteolysis fragments of propeptide present may be more desirable for pharmaceutical development from a regulatory and a biocompatibility in the body perspective. The current study describes an in-depth structural and functional characterization of propeptide truncated variants of ScpA expressed inEscherichia colicells. All three purified ScpA variants, ScpA, 79ΔPro, and 92ΔPro, starting with N32, D79, and A92 positions, respectively, showed similar activity against C5a, which suggests a propeptide-independent activity profile of ScpA. CE-SDS and MALDI top-down sequencing analyses highlight a time-dependent propeptide autoproteolysis of ScpA at 37 °C with a distinct end point at A92 and/or D93. In comparison, all three variants of ScpA exhibit similar stability, melting temperatures, and secondary structure orientation. In summary, this work not only highlights propeptide localization but also provides a strategy to recombinantly produce a final mature and active form of ScpA without any propeptide-related fragments.


Assuntos
Produtos Biológicos , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Endopeptidases/metabolismo , Sinais Direcionadores de Proteínas
15.
PLoS Pathog ; 19(6): e1011481, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384800

RESUMO

Microbial pathogens balance growth against tissue damage to achieve maximum fitness. Central carbon metabolism is connected to growth, but how it influences growth/damage balance is largely unknown. Here we examined how carbon flux through the exclusively fermentative metabolism of the pathogenic lactic acid bacterium Streptococcus pyogenes impacts patterns of growth and tissue damage. Using a murine model of soft tissue infection, we systematically examined single and pair-wise mutants that constrained carbon flux through the three major pathways that S. pyogenes employs for reduction of the glycolytic intermediate pyruvate, revealing distinct disease outcomes. Its canonical lactic acid pathway (via lactate dehydrogenase) made a minimal contribution to virulence. In contrast, its two parallel pathways for mixed-acid fermentation played important, but non-overlapping roles. Anaerobic mixed acid fermentation (via pyruvate formate lyase) was required for growth in tissue, while aerobic mixed-acid pathway (via pyruvate dehydrogenase) was not required for growth, but instead regulated levels of tissue damage. Infection of macrophages in vitro revealed that pyruvate dehydrogenase was required to prevent phagolysosomal acidification, which altered expression of the immunosuppressive cytokine IL-10. Infection of IL-10 deficient mice confirmed that the ability of aerobic metabolism to regulate levels of IL-10 plays a key role in the ability of S. pyogenes to modulate levels of tissue damage. Taken together, these results show critical non-overlapping roles for anaerobic and aerobic metabolism in soft tissue infection and provide a mechanism for how oxygen and carbon flux act coordinately to regulate growth/damage balance. Therapies targeting carbon flux could be developed to mitigate tissue damage during severe S. pyogenes infection.


Assuntos
Infecções dos Tecidos Moles , Streptococcus pyogenes , Animais , Camundongos , Streptococcus pyogenes/metabolismo , Interleucina-10 , Oxirredutases , Ácido Láctico/metabolismo , Piruvatos , Carbono
16.
J Bacteriol ; 205(6): e0011823, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289078

RESUMO

The control of virulence two-component gene regulatory system (CovRS) is critical to the pathogenesis of many medically important streptococci. In emm1 group A streptococci (GAS), CovR directly binds the promoters of numerous GAS virulence factor-encoding genes. Elimination of CovS phosphatase activity increases CovR phosphorylation (CovR~P) levels and abrogates GAS virulence. Given the emm type-specific diversity of CovRS function, in this study we used chromatin immunoprecipitation sequencing (ChIP-seq) to define global CovR DNA occupancy in the wild-type emm3 strain MGAS10870 (medium CovR~P) and its CovS phosphatase-negative derivative 10870-CovS-T284A (high CovR~P). In the wild-type emm3 strain, 89% of the previously identified emm1 CovR binding sites present in the emm3 genome were also enriched; additionally, we ascertained unique CovR binding, primarily to genes in mobile genetic elements and other sites of interstrain chromosomal differences. Elimination of CovS phosphatase activity specifically increased CovR occupancy at the promoters of a broad array of CovR repressed virulence factor-encoding genes, including those encoding the key GAS regulator Mga and M protein. However, a limited number of promoters had augmented enrichment at low CovR~P levels. Differential motif searches using sequences enriched at high versus low CovR~P levels revealed two distinct binding patterns. At high CovR~P, a pseudopalindromic AT-rich consensus sequence (WTWTTATAAWAAAAWNATDA) consistent with CovR binding as a dimer was determined. Conversely, sequences specifically enriched at low CovR~P contained isolated ATTARA motifs suggesting an interaction with a monomer. These data extend understanding of global CovR DNA occupancy beyond emm1 GAS and provide a mechanism for previous observations regarding hypovirulence induced by CovS phosphatase abrogation. IMPORTANCE Given its key role in pathogenesis of Gram-positive bacteria, CovR is one of the most important members of the OmpR/PhoB family of transcriptional regulators. Herein we extend recent GAS CovR global binding analyses done in emm1 to a non-emm1 strain, which is important considering the known inter-emm-type heterogeneity in GAS CovRS function. Our data provide mechanistic understanding for variation in CovRS function between emm types and the profound hypovirulence of CovS phosphatase-negative strains in addition to indicating differential targeting by phosphorylated and nonphosphorylated CovR isoforms at specific CovR binding sites. These findings advance knowledge regarding how a key bacterial virulence regulator impacts pathogenesis and add to the growing appreciation of the function of nonphosphorylated OmpR/PhoB family members.


Assuntos
Infecções Estreptocócicas , Fatores de Virulência , Humanos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Streptococcus pyogenes/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Infecções Estreptocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica
17.
Microbiol Immunol ; 67(7): 319-333, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37138376

RESUMO

Streptococcus pyogenes displays a wide variety of pili, which is largely dependent on serotype. A distinct subset of S. pyogenes strains that possess the Nra transcriptional regulator demonstrates thermoregulated pilus production. Findings obtained in the present study of an Nra-positive serotype M49 strain revealed involvement of conserved virulence factor A (CvfA), also referred to as ribonuclease Y (RNase Y), in virulence factor expression and pilus production, while a cvfA deletion strain showed reduced pilus production and adherence to human keratinocytes as compared with wild-type and revertant strains. Furthermore, transcript levels of pilus subunits and srtC2 genes were decreased by cvfA deletion, which was remarkable at 25°C. Likewise, both messenger RNA (mRNA) and protein levels of Nra were remarkably decreased by cvfA deletion. Whether the expression of other pilus-related regulators, including fasX and CovR, was subject to thermoregulation was also examined. While the mRNA level of fasX, which inhibits cpa and fctA translation, was decreased by cvfA deletion at both 37°C and 25°C, CovR mRNA and protein levels, as well as its phosphorylation level were not significantly changed, suggesting that neither fasX nor CovR is necessarily involved in thermosensitive pilus production. Phenotypic analysis of the mutant strains revealed that culture temperature and cvfA deletion had varied effects on streptolysin S and SpeB activities. Furthermore, bactericidal assay data showed that cvfA deletion decreased the rate of survival in human blood. Together, the present findings indicate that CvfA is involved in regulation of pilus production and virulence-related phenotypes of the serotype M49 strain of S. pyogenes.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
18.
Nucleic Acids Res ; 51(11): 5847-5863, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140059

RESUMO

Streptococcus pyogenes Cas9 (SpCas9) nuclease exhibits considerable position-dependent sequence preferences. The reason behind these preferences is not well understood and is difficult to rationalise, since the protein establishes interactions with the target-spacer duplex in a sequence-independent manner. We revealed here that intramolecular interactions within the single guide RNA (sgRNA), between the spacer and the scaffold, cause most of these preferences. By using in cellulo and in vitro SpCas9 activity assays with systematically designed spacer and scaffold sequences and by analysing activity data from a large SpCas9 sequence library, we show that some long (>8 nucleotides) spacer motifs, that are complementary to the RAR unit of the scaffold, interfere with sgRNA loading, and that some motifs of more than 4 nucleotides, that are complementary to the SL1 unit, inhibit DNA binding and cleavage. Furthermore, we show that intramolecular interactions are present in the majority of the inactive sgRNA sequences of the library, suggesting that they are the most important intrinsic determinants of the activity of the SpCas9 ribonucleoprotein complex. We also found that in pegRNAs, sequences at the 3' extension of the sgRNA that are complementary to the SL2 unit are also inhibitory to prime editing, but not to the nuclease activity of SpCas9.


Assuntos
Proteína 9 Associada à CRISPR , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Nucleotídeos , Sistemas CRISPR-Cas , Edição de Genes
19.
Methods Mol Biol ; 2674: 119-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258964

RESUMO

Group A Streptococcus (GAS, Streptococcus pyogenes) is an exclusively human pathogen that causes a range of diseases, including pharyngitis, tonsillitis, impetigo, erysipelas, necrotizing fasciitis, and toxic shock syndrome. Post-streptococcal sequelae include acute rheumatic fever and rheumatic heart disease. The bacterium produces a large arsenal of virulence factors that contribute to host tissue adhesion/colonization, bacterial spread, and host immune evasion. Immune evasion factors include proteins that interfere with complement, a system of plasma proteins that are activated by pathogens resulting in a variety of reactions on the surface of the pathogen. This leads to the activation of active components with a variety of effector functions, such as cell lysis, opsonization, and chemotaxis of phagocytes to the site of infection. We have recently identified a novel "complement evasion factor" (CEF) in S. pyogenes. CEF directly interacts with complement proteins C1r, C1s, C3, and C5, interrupts all three complement pathways, and prevents opsonization of the bacterial surface with C3b. We here present methods used to analyze the complement interference of CEF.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Virulência , Proteínas do Sistema Complemento , Fatores de Virulência/metabolismo , Fatores Imunológicos , Proteínas de Bactérias/metabolismo
20.
Methods Mol Biol ; 2674: 201-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258969

RESUMO

Mass photometry (MP) is a single molecule technique that enables the characterization of individual proteins. Here we show a detailed workflow using the Refeyn OneMP to investigate molecular complexes, using the M53 protein, a plasminogen-binding group A streptococcal M-like protein (PAM), and human plasminogen as exemplar proteins. The methodology described herein confirmed a 1:1 binding stoichiometry for the M53-plasminogen complex. Additionally, MP was used to identify the oligomerization state, homogeneity, purity, and approximate molecular weights of each protein.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Humanos , Proteínas de Bactérias/metabolismo , Ligação Proteica , Proteínas de Transporte/metabolismo , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Interações Hospedeiro-Patógeno , Fotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...